A control system architecture is described for an autonomous flying vehicle. The vehicle, equipped with fourteen sensors, uses a model helicopter as an airframe. The control system utilizes these sensors to a) remain aloft and in stable flight, b) navigate to a target and c) manipulate a physical object. The overall approach to the problem is based on a behavioral paradigm. The key contribution of this paper is the demonstration of a situated agent under these severe circumstances; as the craft is airborne, it is in constant risk of crashing. Unlike terrestrial mobile robots, the craft must constantly make sound decisions to maintain its integrity.
M. Anthony Lewis, Andrew H. Fagg, George A. Bekey