From exploring planets to cleaning homes, the reach and versatility of robotics is vast. The integration of actuation, sensing and control makes robotics systems powerful, but complicates their simulation. This paper introduces a modular and decentralized architecture for robotics simulation. In contrast to centralized approaches, this balances functionality, provides more diversity, and simplifies connectivity between (independent) calculation modules. As the Virtual Robot Experimentation Platform (V-REP) demonstrates, this gives a smallfootprint 3D robot simulator that concurrently simulates control, actuation, sensing and monitoring. Its distributed and modular approach are ideal for complex scenarios in which a diversity of sensors and actuators operate asynchronously with various rates and characteristics. This allows for versatile prototyping applications including systems verification, safety/remote monitoring, rapid algorithm development, and factory automation simulation.
Marc Freese, Surya P. N. Singh, Fumio Ozaki, Nobut