Performance-asymmetric multi-cores consist of heterogeneous cores, which support the same ISA, but have different computing capabilities. To maximize the throughput of asymmetric multi-core systems, operating systems are responsible for scheduling threads to different types of cores. However, system virtualization poses a challenge for such asymmetric multi-cores, since virtualization hides the physical heterogeneity from guest operating systems. In this paper, we explore the design space of hypervisor schedulers for asymmetric multi-cores, which do not require asymmetry-awareness from guest operating systems. The proposed scheduler characterizes the efficiency of each virtual core, and map the virtual core to the most area-efficient physical core. In addition to the overall system throughput, we consider two important aspects of virtualizing asymmetric multi-cores: performance fairness among virtual machines and performance scalability for changing availability of fast and slow cor...