We present an interactive navigation system for virtual colonoscopy, which is based solely on high performance volume rendering. Previous colonic navigation systems have employed either a surface rendering or a Z-buffer-assisted volume rendering method that depends on the surface rendering results. Our method is a fast direct volume rendering technique that exploits distance information stored in the potential field of the camera control model, and is parallelized on a multiprocessor. Experiments have been conducted on both a simulated pipe and patients' data sets acquired with a CT scanner.
Ming Wan, Qingyu Tang, Arie E. Kaufman, Zhengrong