We propose a language production model that uses dynamic discourse information to account for speakers’ choices of referring expressions. Our model extends previous rational speech act models (Frank and Goodman, 2012) to more naturally distributed linguistic data, instead of assuming a controlled experimental setting. Simulations show a close match between speakers’ utterances and model predictions, indicating that speakers’ behavior can be modeled in a principled way by considering the probabilities of referents in the discourse and the information conveyed by each word.