The sequence kernel has been shown to be a promising kernel function for learning from sequential data such as speech and DNA. However, it is not scalable to massive datasets due ...
Makoto Yamada, Masashi Sugiyama, Gordon Wichern, T...
We investigate how to learn a kernel matrix for high dimensional data that lies on or near a low dimensional manifold. Noting that the kernel matrix implicitly maps the data into ...
This paper addresses the problem of transductive learning of the kernel matrix from a probabilistic perspective. We define the kernel matrix as a Wishart process prior and construc...
Kernel methods yield state-of-the-art performance in certain applications such as image classification and object detection. However, large scale problems require machine learning...
Sreekanth Vempati, Andrea Vedaldi, Andrew Zisserma...
1 A kernel determines the inductive bias of a learning algorithm on a specific data set, and it is beneficial to design specific kernel for a given data set. In this work, we propo...