Sciweavers

39 search results - page 1 / 8
» Covariance Regularization for Supervised Learning in High Di...
Sort
View

Publication
170views
13 years 10 months ago
Covariance Regularization for Supervised Learning in High Dimensions
This paper studies the effect of covariance regularization for classific ation of high-dimensional data. This is done by fitting a mixture of Gaussians with a regularized covaria...
Daniel L. Elliott, Charles W. Anderson, Michael Ki...
ICML
2009
IEEE
14 years 11 months ago
Partially supervised feature selection with regularized linear models
This paper addresses feature selection techniques for classification of high dimensional data, such as those produced by microarray experiments. Some prior knowledge may be availa...
Thibault Helleputte, Pierre Dupont
ICML
2008
IEEE
14 years 11 months ago
An empirical evaluation of supervised learning in high dimensions
In this paper we perform an empirical evaluation of supervised learning on highdimensional data. We evaluate performance on three metrics: accuracy, AUC, and squared loss and stud...
Rich Caruana, Nikolaos Karampatziakis, Ainur Yesse...
PKDD
2009
Springer
148views Data Mining» more  PKDD 2009»
14 years 5 months ago
Feature Selection by Transfer Learning with Linear Regularized Models
Abstract. This paper presents a novel feature selection method for classification of high dimensional data, such as those produced by microarrays. It includes a partial supervisio...
Thibault Helleputte, Pierre Dupont
ICML
2007
IEEE
14 years 11 months ago
Regression on manifolds using kernel dimension reduction
We study the problem of discovering a manifold that best preserves information relevant to a nonlinear regression. Solving this problem involves extending and uniting two threads ...
Jens Nilsson, Fei Sha, Michael I. Jordan