Clustering is traditionally viewed as an unsupervised method for data analysis. However, in some cases information about the problem domain is available in addition to the data in...
Kiri Wagstaff, Claire Cardie, Seth Rogers, Stefan ...
AdaCost, a variant of AdaBoost, is a misclassification cost-sensitive boosting method. It uses the cost of misclassifications to update the training distribution on successive boo...
Wei Fan, Salvatore J. Stolfo, Junxin Zhang, Philip...
In this paper, we examine a method for feature subset selection based on Information Theory. Initially, a framework for de ning the theoretically optimal, but computationally intr...
Abstract. We describe and empirically evaluate machine learning methods for the prediction of zinc binding sites from protein sequences. We start by observing that a data set consi...
Sauro Menchetti, Andrea Passerini, Paolo Frasconi,...
We propose a deterministic method to evaluate the integral of a positive function based on soft-binning functions that smoothly cut the integral into smaller integrals that are ea...