Sciweavers

340 search results - page 22 / 68
» Kernelized value function approximation for reinforcement le...
Sort
View
ATAL
2007
Springer
15 years 8 months ago
Reducing the complexity of multiagent reinforcement learning
It is known that the complexity of the reinforcement learning algorithms, such as Q-learning, may be exponential in the number of environment’s states. It was shown, however, th...
Andriy Burkov, Brahim Chaib-draa

Publication
222views
15 years 11 months ago
Algorithms and Bounds for Rollout Sampling Approximate Policy Iteration
Abstract: Several approximate policy iteration schemes without value functions, which focus on policy representation using classifiers and address policy learning as a supervis...
Christos Dimitrakakis, Michail G. Lagoudakis
CG
2000
Springer
15 years 6 months ago
Chess Neighborhoods, Function Combination, and Reinforcement Learning
Abstract. Over the years, various research projects have attempted to develop a chess program that learns to play well given little prior knowledge beyond the rules of the game. Ea...
Robert Levinson, Ryan Weber
GECCO
2004
Springer
122views Optimization» more  GECCO 2004»
15 years 7 months ago
Gradient-Based Learning Updates Improve XCS Performance in Multistep Problems
This paper introduces a gradient-based reward prediction update mechanism to the XCS classifier system as applied in neuralnetwork type learning and function approximation mechani...
Martin V. Butz, David E. Goldberg, Pier Luca Lanzi
AIPS
2008
15 years 4 months ago
Learning Heuristic Functions through Approximate Linear Programming
Planning problems are often formulated as heuristic search. The choice of the heuristic function plays a significant role in the performance of planning systems, but a good heuris...
Marek Petrik, Shlomo Zilberstein