Sciweavers

10 search results - page 1 / 2
» Learning and Recognition of Object Manipulation Actions Usin...
Sort
View
ROMAN
2007
IEEE
191views Robotics» more  ROMAN 2007»
14 years 5 months ago
Learning and Recognition of Object Manipulation Actions Using Linear and Nonlinear Dimensionality Reduction
— In this work, we perform an extensive statistical evaluation for learning and recognition of object manipulation actions. We concentrate on single arm/hand actions but study th...
Isabel Serrano Vicente, Danica Kragic, Jan-Olof Ek...
CVPR
2008
IEEE
15 years 1 months ago
Semi-Supervised Discriminant Analysis using robust path-based similarity
Linear Discriminant Analysis (LDA), which works by maximizing the within-class similarity and minimizing the between-class similarity simultaneously, is a popular dimensionality r...
Yu Zhang, Dit-Yan Yeung
BMVC
2010
13 years 9 months ago
Iterative Hyperplane Merging: A Framework for Manifold Learning
We present a framework for the reduction of dimensionality of a data set via manifold learning. Using the building blocks of local hyperplanes we show how a global manifold can be...
Harry Strange, Reyer Zwiggelaar
PSIVT
2009
Springer
400views Multimedia» more  PSIVT 2009»
14 years 5 months ago
Local Image Descriptors Using Supervised Kernel ICA
PCA-SIFT is an extension to SIFT which aims to reduce SIFT’s high dimensionality (128 dimensions) by applying PCA to the gradient image patches. However PCA is not a discriminati...
Masaki Yamazaki, Sidney Fels
ICCV
2007
IEEE
14 years 5 months ago
Laplacian PCA and Its Applications
Dimensionality reduction plays a fundamental role in data processing, for which principal component analysis (PCA) is widely used. In this paper, we develop the Laplacian PCA (LPC...
Deli Zhao, Zhouchen Lin, Xiaoou Tang