We present a novel mixed-state dynamic Bayesian network (DBN) framework for modeling and classifying timeseries data such as object trajectories. A hidden Markov model (HMM) of di...
Vladimir Pavlovic, Brendan J. Frey, Thomas S. Huan...
Bayesian networks are an attractive modeling tool for human sensing, as they combine an intuitive graphical representation with ef?cient algorithms for inference and learning. Ear...
Tanzeem Choudhury, James M. Rehg, Vladimir Pavlovi...
Originally devoted to specific applications such as biology, medicine and demography, duration models are now widely used in economy, finance or reliability. Recent works in var...
Roland Donat, Philippe Leray, Laurent Bouillaut, P...
The human figure exhibits complex and rich dynamic behavior that is both nonlinear and time-varying. Effective models of human dynamics can be learned from motion capture data usi...
Abstract. An important problem in biology is to understand correspondences between mRNA microarray levels and mass spectrometry peptide counts. Recently, a compendium of mRNA expre...