We address the problem of evaluating the risk of a given model accurately at minimal labeling costs. This problem occurs in situations in which risk estimates cannot be obtained f...
Christoph Sawade, Niels Landwehr, Steffen Bickel, ...
Many structured prediction tasks involve complex models where inference is computationally intractable, but where it can be well approximated using a linear programming relaxation...
Ofer Meshi, David Sontag, Tommi Jaakkola, Amir Glo...
We develop a novel online learning algorithm for the group lasso in order to efficiently find the important explanatory factors in a grouped manner. Different from traditional bat...
Haiqin Yang, Zenglin Xu, Irwin King, Michael R. Ly...
We present a novel approach for structure prediction that addresses the difficulty of obtaining labeled structures for training. We observe that structured output problems often h...
Ming-Wei Chang, Vivek Srikumar, Dan Goldwasser, Da...
This paper proposes a multiple instance learning (MIL) algorithm for Gaussian processes (GP). The GP-MIL model inherits two crucial benefits from GP: (i) a principle manner of lea...