Sciweavers

COMBINATORICA
2011
13 years 13 days ago
On the chromatic number of random geometric graphs
Given independent random points X1, . . . , Xn ∈ Rd with common probability distribution ν, and a positive distance r = r(n) > 0, we construct a random geometric graph Gn wi...
Colin McDiarmid, Tobias Müller
MP
2010
128views more  MP 2010»
13 years 11 months ago
Copositivity cuts for improving SDP bounds on the clique number
Adding cuts based on copositive matrices, we propose to improve Lov´asz’ bound θ on the clique number and its tightening θ introduced by McEliece, Rodemich, Rumsey, and Schri...
Immanuel M. Bomze, Florian Frommlet, Marco Locatel...
COMBINATORICS
2004
108views more  COMBINATORICS 2004»
14 years 14 days ago
On the Chromatic Number of Intersection Graphs of Convex Sets in the Plane
Let G be the intersection graph of a finite family of convex sets obtained by translations of a fixed convex set in the plane. We show that every such graph with clique number k i...
Seog-Jin Kim, Alexandr V. Kostochka, Kittikorn Nak...
COMBINATORICS
2007
118views more  COMBINATORICS 2007»
14 years 18 days ago
On the Quantum Chromatic Number of a Graph
We investigate the notion of quantum chromatic number of a graph, which is the minimal number of colours necessary in a protocol in which two separated provers can convince a refe...
Peter J. Cameron, Ashley Montanaro, Michael W. New...
ARSCOM
2006
132views more  ARSCOM 2006»
14 years 20 days ago
C-Perfect K-Uniform Hypergraphs
In this paper we define the concept of clique number of uniform hypergraph and study its relationship with circular chromatic number and clique number. For every positive integer ...
Changiz Eslahchi, Arash Rafiey
CORR
2010
Springer
104views Education» more  CORR 2010»
14 years 21 days ago
Coloring translates and homothets of a convex body
We obtain improved upper bounds and new lower bounds on the chromatic number as a linear function of the clique number, for the intersection graphs (and their complements) of fini...
Adrian Dumitrescu, Minghui Jiang
LION
2009
Springer
125views Optimization» more  LION 2009»
14 years 7 months ago
New Bounds on the Clique Number of Graphs Based on Spectral Hypergraph Theory
This work introduces new bounds on the clique number of graphs derived from a result due to S´os and Straus, which generalizes the Motzkin-Straus Theorem to a specific class of h...
Samuel Rota Bulò, Marcello Pelillo