Abstract. In this paper we elaborate on a kernel extension to tensorbased data analysis. The proposed ideas find applications in supervised learning problems where input data have ...
Marco Signoretto, Lieven De Lathauwer, Johan A. K....
In this paper we introduce a new sparseness inducing prior which does not involve any (hyper)parameters that need to be adjusted or estimated. Although other applications are poss...
Consider a supervised learning problem in which examples contain both numerical- and text-valued features. To use traditional featurevector-based learning methods, one could treat...
Sofus A. Macskassy, Haym Hirsh, Arunava Banerjee, ...
For many supervised learning problems, we possess prior knowledge about which features yield similar information about the target variable. In predicting the topic of a document, ...
Ted Sandler, John Blitzer, Partha Pratim Talukdar,...
The preference model introduced in this paper gives a natural framework and a principled solution for a broad class of supervised learning problems with structured predictions, su...
We introduce a framework for filtering features that employs the Hilbert-Schmidt Independence Criterion (HSIC) as a measure of dependence between the features and the labels. The ...
Le Song, Alex J. Smola, Arthur Gretton, Karsten M....