Consider a supervised learning problem in which examples contain both numerical- and text-valued features. To use traditional featurevector-based learning methods, one could treat the presence or absence of a word as a Boolean feature and use these binary-valued features together with the numerical features. However, the use of a text-classification system on this is a bit more problematic -- in the most straight-forward approach each number would be considered a distinct token and treated as a word. This paper presents an alternative approach for the use of text classification methods for supervised learning problems with numerical-valued features in which the numerical features are converted into bag-of-words features, thereby making them directly usable by text classification methods. We show that even on purely numerical-valued data the results of textclassification on the derived text-like representation outperforms the more naive numbers-as-tokensrepresentation and,more importan...
Sofus A. Macskassy, Haym Hirsh, Arunava Banerjee,