With current grid middleware, it is difficult to deploy distributed supercomputing applications that run concurrently on multiple resources. As current grid middleware systems have problems with co-allocation (scheduling across multiple grid sites), fault-tolerance and are difficult to set-up and maintain, we consider an alternative: peer-to-peer (P2P) supercomputing. P2P supercomputing middleware systems overcome many limitations of current grid systems. However, the lack of central components make scheduling on P2P systems inherently difficult. As a possible scheduling solution for P2P supercomputing middleware we introduce flood scheduling. It is locality aware, decentralized, flexible and supports co-allocation. We introduce Zorilla, a prototype P2P supercomputing middleware system. Evaluation of Zorilla on over 600 processors at six sites of the Grid5000 system shows that flood scheduling, when used in a P2P network with suitable properties, is a good alternative to central...
Niels Drost, Rob van Nieuwpoort, Henri E. Bal