— This paper deals with the design of a micro-force sensing device for biomechanical characterization of biological samples. This device combines (SPM) techniques and advanced robotics approaches and allows to carry out in vitro prolonged observations as well as biomechanical characterization experiments. Elastic properties of biological samples are reflected to the macroscale during the mechanical characterization process by means of a haptic sensing device. Non-linear elasticity theory formalism is used in order to achieve realistic elastic rendering. Mechanical characterization experiments are conducted on human tumoral Epithilial Hella cells in order to demonstrate the efficiency and viability of the proposed system.