Rising interest in the applications of wireless sensor networks has spurred research in the development of computing systems for lowthroughput, energy-constrained applications. Unlike traditional performance oriented applications, sensor network nodes are primarily constrained by operation lifetime, which is limited by power consumption. Advanced CMOS process technologies provide ever increasing transistor density and improved performance characteristics. However, shrinking feature size and decreasing threshold voltages also lead to significant increases in leakage current, which is especially troublesome for applications with significant idle times. This work investigates tradeoffs between leakage and active power for low-throughput applications. We study these issues across a range of process technologies on a computing architecture that provides explicit support for fine-grain leakage-control techniques such as Vdd-gating and adaptive body bias. We present a methodology for sele...