Co-evolutionary algorithms (CEAs) have been applied to optimization and machine learning problems with often mediocre results. One of the causes for the unfulfilled expectations is the discrepancy between the external problem solving goal and the internal mechanisms of the algorithm. In this paper, we investigate in a principled way the relationships between the internal subjective metric used as fitness by a co-evolutionary algorithm and the external objective metric measuring the algorithm’s progress towards the envisioned goal. We point out the complexity of these relationships and explain their causes.
Elena Popovici, Kenneth A. De Jong