Arbitrary memory dependencies and variable latency memory systems are major obstacles to the synthesis of large-scale ASIC systems in high-level synthesis. This paper presents SOMA, a synthesis framework for constructing Memory Access Network (MAN) architectures that inherently enforce memory consistency in the presence of dynamic memory access dependencies. A fundamental bottleneck in any such network is arbitrating between concurrent accesses to a shared memory resource. To alleviate this bottleneck, SOMA uses an application-specific concurrency analysis technique to predict the dynamic memory parallelism profile of the application. This is then used to customize the MAN architecture. Depending on the parallelism profile, the MAN may be optimized for latency, throughput or both. The optimized MAN is automatically synthesized into gate-level structural Verilog using a flexible library of network building blocks. SOMA has been successfully integrated into an automated C-to-hardwar...