Sciweavers

CIE
2005
Springer

Computably Enumerable Sets in the Solovay and the Strong Weak Truth Table Degrees

14 years 5 months ago
Computably Enumerable Sets in the Solovay and the Strong Weak Truth Table Degrees
The strong weak truth table reducibility was suggested by Downey, Hirschfeldt, and LaForte as a measure of relative randomness, alternative to the Solovay reducibility. It also occurs naturally in proofs in classical computability theory as well as in the recent work of Soare, Nabutovsky and Weinberger on applications of computability to differential geometry. Yu and Ding showed that the relevant degree structure restricted to the c.e. reals has no greatest element, and asked for maximal elements. We answer this question for the case of c.e. sets. Using a doubly non-uniform argument we show that there are no maximal elements in the sw degrees of the c.e. sets. We note that the same holds for the Solovay degrees of c.e. sets.
George Barmpalias
Added 26 Jun 2010
Updated 26 Jun 2010
Type Conference
Year 2005
Where CIE
Authors George Barmpalias
Comments (0)