Sciweavers

CIE
2005
Springer

Formalising Exact Arithmetic in Type Theory

14 years 5 months ago
Formalising Exact Arithmetic in Type Theory
In this work we focus on a formalisation of the algorithms of lazy exact arithmetic `a la Potts and Edalat [1]. We choose the constructive type theory as our formal verification tool. We discuss an extension of the constructive type theory with coinductive types that enables one to formalise and reason about the infinite objects. We show examples of how infinite objects such as streams and expression trees can be formalised as coinductive types. We study the type theoretic notion of productivity which ensures the infiniteness of the outcome of the algorithms on infinite objects. Syntactical methods are not always strong enough to ensure the productivity. However, if some information about the complexity of a function is provided, one may be able to show the productivity of that function. In the case of the normalisation algorithm we show that such information can be obtained from the choice of real number representation that is used to represent the input and the output.
Milad Niqui
Added 26 Jun 2010
Updated 26 Jun 2010
Type Conference
Year 2005
Where CIE
Authors Milad Niqui
Comments (0)