Registration, that is, the alignment of multiple images, has been one of the most challenging problems in the field of computer vision. It also serves as an important role in biomedical image analysis and its applications. Although various methods have been proposed for solving different kinds of registration problems in computer vision, the results are still far from ideal when it comes to real world biomedical image applications. For instance, in order to register 3D brain MR images, current state of the art registration methods use a multiresolution coarse-to-fine algorithm, which typically involves starting with low resolution images and working progressively through to higher resolutions, with the aim to avoid the local maximum "traps". However, these methods do not always successfully avoid the local maximum. Consequently, various rather sophisticated optimization methods are developed to attack this problem. In this paper, we propose a novel viewpoint on the coarse-to-...
Terrence Chen, Thomas S. Huang, Wotao Yin, Xiang S