Image fusion is the process of extracting meaningful visual information from two or more images and combinining them to form one fused image. Image fusion is important within many different image processing fields from remote sensing to medical applications. Previously, real valued wavelet transforms have been used for image fusion. Although this technique has provided improvements over more naive methods, this transform suffers from the shift variance and lack of directionality associated with its wavelet bases. These problems have been overcome by the use of a reversible and discrete complex wavelet transform (the Dual Tree Complex Wavelet Transform DT-CWT). However, the existing structure of this complex wavelet decomposition enforces a very strict choice of filters in order to achieve a necessary quarter shift in coefficient output. This paper therefore introduces an alternative structure to the DTCWT that is more flexible in its potential choice of filters and can be implemented ...
Paul R. Hill, David R. Bull, Cedric Nishan Canagar