In this paper, we propose a new method for simulating reactive motions for running or walking human figures. The goal is to generate realistic animations of how humans compensate for large external forces and maintain balance while running or walking. We simulate the reactive motions of adjusting the body configuration and altering footfall locations in response to sudden external disturbance forces on the body. With our proposed method, the user first imports captured motion data of a run or walk cycle to use as the primary motion. While executing the primary motion, an external force is applied to the body. The system automatically calculates a reactive motion for the center of mass and angular momentum around the center of mass using an enhanced version of the linear inverted pendulum model. Finally, the trajectories of the generalized coordinates that realize the precalculated trajectories of the center of mass, zero moment point, and angular momentum are obtained using constra...