Formal principles governing best practices in classification and definition have for too long been neglected in the construction of biomedical ontologies, in ways which have important negative consequences for data integration and ontology alignment. We argue that the use of such principles in ontology construction can serve as a valuable tool in error-detection and also in supporting reliable manual curation. We argue also that such principles are a prerequisite for the successful application of advanced data integration techniques such as ontology-based multi-database querying, automated ontology alignment and ontology-based text-mining. These theses are illustrated by means of a case study of the Gene Ontology, a project of increasing importance within the field of biomedical data integration.