This paper deals with the computation of optical flow and occlusion detection in the case of large displacements. We propose a Bayesian approach to the optical flow problem and solve it by means of differential techniques. The images are regarded as noisy measurements of an underlying ’true’ image-function. Additionally, the image data is considered incomplete, in the sense that we do not know which pixels from a particular image are occluded in the other images. We describe an EM-algorithm, which iterates between estimating values for all hidden quantities, and optimizing the current optical flow estimates by differential techniques. The Bayesian way of describing the problem leads to more insight in existing differential approaches, and offers some natural extensions to them. The resulting system involves less parameters and gives an interpretation to the remaining ones. An important new feature is the photometric detection of occluded pixels. We compare the algorithm with exi...
Christoph Strecha, Rik Fransens, Luc J. Van Gool