Traditional placement algorithms for FPGAs are normally carried out on a fixed clustering solution of a circuit. The impact of clustering on wirelength and delay of the placement solutions is not well quantified. In this paper, we present an algorithm named SCPlace that performs simultaneous clustering and placement to minimize both the total wirelength and longest path delay. We also incorporate a recently proposed path counting-based net weighting scheme [16]. Our algorithm SCPlace consistently outperforms the state-of-the-art FPGA placement flow (T-VPack + VPR) with an average reduction of up to 36% in total wirelength and 31% in longest path delay.