Sciweavers

GECCO
2004
Springer

Metaheuristics for Natural Language Tagging

14 years 4 months ago
Metaheuristics for Natural Language Tagging
Abstract. This work compares different metaheuristics techniques applied to an important problem in natural language: tagging. Tagging amounts to assigning to each word in a text one of its possible lexical categories (tags) according to the context in which the word is used (thus it is a disambiguation task). Specifically, we have applied a classic genetic algorithm (GA), a CHC algorithm, and a Simulated Annealing (SA). The aim of the work is to determine which one is the most accurate algorithm (GA, CHC or SA), which one is the most appropriate encoding for the problem (integer or binary) and also to study the impact of parallelism on each considered method. The work has been highly simplified by the use of MALLBA, a library of search techniques which provides generic optimization software skeletons able to run in sequential, LAN and WAN environments. Experiments show that the GA with the integer encoding provides the more accurate results. For the CHC algorithm, the best results ...
Lourdes Araujo, Gabriel Luque, Enrique Alba
Added 01 Jul 2010
Updated 01 Jul 2010
Type Conference
Year 2004
Where GECCO
Authors Lourdes Araujo, Gabriel Luque, Enrique Alba
Comments (0)