DNA microarrays are a valuable tool for massively parallel DNA-DNA hybridization experiments. Currently, most applications rely on the existence of sequence-specific oligonucleotide probes. In large families of closely related target sequences, such as different virus subtypes, the high degree of similarity often makes it impossible to find a unique probe for every target. Fortunately, this is unnecessary. We propose a microarray design methodology based on a group testing approach. While probes might bind to multiple targets simultaneously, a properly chosen probe set can still unambiguously distinguish the presence of one target set from the presence of a different target set. Our method is the first one that explicitly takes cross-hybridization and experimental errors into account while accommodating several targets. The approach consists of three steps: (1) Pre-selection of probe candidates, (2) Generation of a suitable group testing design, and (3) Decoding of hybridization re...
Alexander Schliep, David C. Torney, Sven Rahmann