Up to recently autonomous mobile robots were mostly designed to run within an indoor, yet partly structured and flat, environment. In rough terrain many problems arise and position tracking becomes more difficult. The robot has to deal with wheel slippage and large orientation changes. In this paper we will first present the recent developments on the off-road rover Shrimp. Then a new method, called 3D-Odometry, which extends the standard 2D odometry to the 3D space will be developed. Since it accounts for transitions, the 3D-Odometry provides better position estimates. It will certainly help to go towards real 3D navigation for outdoor robots.