Data-parallel programs are both growing in importance and increasing in diversity, resulting in specialized processors targeted at specific classes of these programs. This paper presents a classification scheme for data-parallel program attributes, and proposes micro-architectural mechanisms to support applications with diverse behavior using a single reconfigurable architecture. We focus on the following four broad kinds of data-parallel programs — DSP/multimedia, scientific, networking, and real-time graphics workloads. While all of these programs exhibit high computational intensity, coarse-grain regular control behavior, and some regular memory access behavior, they show wide variance in the computation requirements, fine grain control behavior, and the frequency of other types of memory accesses. Based on this study of application attributes, this paper proposes a set of general micro-architectural mechanisms that enable a baseline architecture to be dynamically tailored t...
Karthikeyan Sankaralingam, Stephen W. Keckler, Wil