Quantum computation has become an intriguing technology with which to attack difficult problems and to enhance system security. Quantum algorithms, however, have been analyzed under idealized assumptions without important physical constraints in mind. In this paper, we analyze two key constraints: the short spatial distance of quantum interactions and the short temporal life of quantum data. In particular, quantum computations must make use of extremely robust error correction techniques to extend the life of quantum data. We present optimized spatial layouts of quantum error correction circuits for quantum bits embedded in silicon. We analyze the complexity of error correction under the constraint that interaction between these bits is near neighbor and data must be propagated via swap operations from one part of the circuit to another. We discover two interesting results from our quantum layouts. First, the recursive nature of quantum error correction circuits requires a additional...
Dean Copsey, Mark Oskin, Tzvetan S. Metodi, Freder