Sciweavers

ICES
2003
Springer

Spiking Neural Networks for Reconfigurable POEtic Tissue

14 years 4 months ago
Spiking Neural Networks for Reconfigurable POEtic Tissue
Abstract. Vertebrate and most invertebrate organisms interact with their environment through processes of adaptation and learning. Such processes are generally controlled by complex networks of nerve cells, or neurons, and their interactions. Neurons are characterized by all-or-none discharges—the spikes— and the time series corresponding to the sequences of the discharges—the spike trains — carry most of the information used for intercellular communication. This paper describes biologically inspired spiking neural network models suitable for digital hardware implementation. We consider bio-realism, hardware friendliness, and performance as factors which influence the ability of these models to integrate into a flexible computational substrate inspired by evolutionary, developmental and learning aspects of living organisms. Both software and hardware simulations have been used to assess and compare the different models to determine the most suitable spiking neural network model...
Jan Eriksson, Oriol Torres, Andrew Mitchell, Gayle
Added 06 Jul 2010
Updated 06 Jul 2010
Type Conference
Year 2003
Where ICES
Authors Jan Eriksson, Oriol Torres, Andrew Mitchell, Gayle Tucker, Ken Lindsay, David M. Halliday, Jay Rosenberg, Juan Manuel Moreno, Alessandro E. P. Villa
Comments (0)