A long-standing research problem in computer graphics is to reproduce the visual experience of walking through a large photorealistic environment interactively. On one hand, traditional geometry-based rendering systems fall short of simulating the visual realism of a complex environment. On the other hand, image-based rendering systems have to date been unable to capture and store a sampled representation of a large environment with complex lighting and visibility effects. In this paper, we present a “Sea of Images,” a practical approach to dense sampling, storage, and reconstruction of the plenoptic function in large, complex indoor environments. We use a motorized cart to capture omnidirectional images every few inches on a eye-height plane throughout an environment. The captured images are compressed and stored in a multiresolution hierarchy suitable for real-time prefetching during an interactive walkthrough. Later, novel images are reconstructed for a simulated observer by re...
Daniel G. Aliaga, Thomas A. Funkhouser, Dimah Yano