In 1876 Charles Lutwidge Dodgson suggested the intriguing voting rule that today bears his name. Although Dodgson’s rule is one of the most well-studied voting rules, it suffers from serious deficiencies, both from the computational point of view—it is NP-hard even to approximate the Dodgson score within sublogarithmic factors—and from the social choice point of view—it fails basic social choice desiderata such as monotonicity and homogeneity. In a previous paper [Caragiannis et al., SODA 2009] we have asked whether there are approximation algorithms for Dodgson’s rule that are monotonic or homogeneous. In this paper we give definitive answers to these questions. We design a monotonic exponential-time algorithm that yields a 2-approximation to the Dodgson score, while matching this result with a tight lower bound. We also present a monotonic polynomial-time O(log m)-approximation algorithm (where m is the number of alternatives); this result is tight as well due to a compl...