Abstract. We prove a new congruence result for the π-calculus: bisimilarity is a congruence in the sub-calculus that does not include restriction nor sum, and features top-level replications. Our proof relies on algebraic properties of replication, and on a new syntactic characterisation of bisimilarity. We obtain this characterisation using a rewriting system rather than a purely equational axiomatisation. We then deduce substitution closure, and hence, congruence. Whether bisimilarity is a congruence when replications are unrestricted remains open.