We present a simple approach for planning the motion of nonholonomic robots among obstacles. Existing methods lead to open-loop solutions which are either obtained in two stages, approximating a previously built holonomic path, or computationally intensive, being based on configuration space discretization. Our nonholonomic planner employs a direct projection strategy to modify on-line the output of a holonomic incremental planner, and generates velocity control inputs that realize the desired motion in a least-squares sense. As a result, a feedback scheme is obtained which can use only local sensor information. The proposed approach is applied to unicycle kinematics, with artificial potential fields or vortex fields as local holonomic planners.