In previous papers, I have argued that while parallel mechanisms are well known for their favorable structural properties, their utility is generally limited by an inherently small workspace. I have also argued that proper use of actuator redundancy can simultaneously increase the workspace, remove singularities, and dramatically improve overall kinematic, structural, and actuator performance, while keeping the complexity low. This paper discusses a prototype shoulder joint more appropriately described as a combinatorial mechanism which exhibits the features. Additional benefits in terms of modularity, self-calibration, reliability, self-test, and degraded modes of operation are briefly discussed in the conclusion.