A novel portable hardware architecture of the Elliptic Curve Method of factoring, designed and optimized for application in the relation collection step of the Number Field Sieve, is described and analyzed. A comparison with an earlier proof-of-concept design by Pelzl, Simka, et al. has been performed, and a substantial improvement has been demonstrated in terms of both the execution time and the area-time product. The ECM architecture has been ported across five different families of FPGA devices in order to select the family with the best performance to cost ratio. A timing comparison with the highly optimized software implementation, GMP-ECM, has been performed. Our results indicate that low-cost families of FPGAs, such as Spartan-3 and Spartan-3E, offer at least an order of magnitude improvement over the same generation of microprocessors in terms of the performance to cost ratio.