Sciweavers

ECCV
2006
Springer

A Probabilistic Framework for Correspondence and Egomotion

14 years 3 months ago
A Probabilistic Framework for Correspondence and Egomotion
This paper is an argument for two assertions: First, that by representing correspondence probabilistically, drastically more correspondence information can be extracted from images. Second, that by increasing the amount of correspondence information used, more accurate egomotion estimation is possible. We present a novel approach illustrating these principles. We first present a framework for using Gabor filters to generate such correspondence probability distributions. Essentially, different filters 'vote' on the correct correspondence in a way giving their relative likelihoods. Next, we use the epipolar constraint to generate a probability distribution over the possible motions. As the amount of correspondence information is increased, the set of motions yielding significant probabilities is shown to 'shrink' to the correct motion.
Justin Domke, Yiannis Aloimonos
Added 22 Aug 2010
Updated 22 Aug 2010
Type Conference
Year 2006
Where ECCV
Authors Justin Domke, Yiannis Aloimonos
Comments (0)