Sciweavers

AUSDM
2008
Springer

Clustering and Classification of Maintenance Logs using Text Data Mining

14 years 1 months ago
Clustering and Classification of Maintenance Logs using Text Data Mining
Spreadsheets applications allow data to be stored with low development overheads, but also with low data quality. Reporting on data from such sources is difficult using traditional techniques. This case study uses text data mining techniques to analyse 12 years of data from dam pump station maintenance logs stored as free text in a spreadsheet application. The goal was to classify the data as scheduled maintenance or unscheduled repair jobs. Data preparation steps required to transform the data into a format appropriate for text data mining are discussed. The data is then mined by calculating term weights to which clustering techniques are applied. Clustering identified some groups that contained relatively homogeneous types of jobs. Training a classification model to learn the cluster groups allowed those jobs to be identified in unseen data. Yet clustering did not provide a clear overall distinction between scheduled and unscheduled jobs. With some manual analysis to code a target v...
Brett Edwards, Michael Zatorsky, Richi Nayak
Added 12 Oct 2010
Updated 12 Oct 2010
Type Conference
Year 2008
Where AUSDM
Authors Brett Edwards, Michael Zatorsky, Richi Nayak
Comments (0)