Abstract. We study two-stage robust variants of combinatorial optimization problems like Steiner tree, Steiner forest, and uncapacitated facility location. The robust optimization problems, previously studied by Dhamdhere et al. [1], Golovin et al. [6], and Feige et al. [4], are two-stage planning problems in which the requirements are revealed after some decisions are taken in stage one. One has to then complete the solution, at a higher cost, to meet the given requirements. In the robust Steiner tree problem, for example, one buys some edges in stage one after which some terminals are revealed. In the second stage, one has to buy more edges, at a higher cost, to complete the stage one solution to build a Steiner tree on these terminals. The objective is to minimize the total cost under the worstcase scenario. In this paper, we focus on the case of exponentially many scenarios given implicitly. A scenario consists of any subset of k terminals (for Steiner tree), or any subset of k ter...
Rohit Khandekar, Guy Kortsarz, Vahab S. Mirrokni,