A shuffle of a set of ciphertexts is a new set of ciphertexts with the same plaintexts in permuted order. Shuffles of homomorphic encryptions are a key component in mix-nets, which in turn are used in protocols for anonymization and voting. Since the plaintexts are encrypted it is not directly verifiable whether a shuffle is correct, and it is often necessary to prove the correctness of a shuffle using a zeroknowledge proof or argument. In previous zero-knowledge shuffle arguments from the literature the communication complexity grows linearly with the number of ciphertexts in the shuffle. We suggest the first practical shuffle argument with sub-linear communication complexity. Our result stems from combining previous work on shuffle arguments with ideas taken from probabilistically checkable proofs.