In this paper, we enumerate the number of combinatorial changes of the the Euclidean minimum spanning tree (EMST) of a set of n moving points in 2dimensional space. We assume that the motion of the points in the plane, is defined by algebraic functions of maximum degree s of time. We prove an upper bound of O(n3 2s(n2 )) for the number of the combinatorial changes of the EMST, where s(n)=s(n)/n and s(n) is the maximum length of Davenport-Schinzel sequences of order s on n symbols which is nearly linear in n. This result is an O(n) improvement over the previously trivial bound of O(n4 ).