Sciweavers

COLING
2008

A Local Alignment Kernel in the Context of NLP

14 years 1 months ago
A Local Alignment Kernel in the Context of NLP
This paper discusses local alignment kernels in the context of the relation extraction task. We define a local alignment kernel based on the Smith-Waterman measure as a sequence similarity metric and proceed with a range of possibilities for computing a similarity between elements of sequences. We propose to use distributional similarity measures on elements and by doing so we are able to incorporate extra information from the unlabeled data into a learning task. Our experiments suggest that a LA kernel provides promising results on some biomedical corpora largely outperforming a baseline.
Sophia Katrenko, Pieter W. Adriaans
Added 29 Oct 2010
Updated 29 Oct 2010
Type Conference
Year 2008
Where COLING
Authors Sophia Katrenko, Pieter W. Adriaans
Comments (0)