Sciweavers

LREC
2010

Active Learning and Crowd-Sourcing for Machine Translation

14 years 2 months ago
Active Learning and Crowd-Sourcing for Machine Translation
In recent years, corpus based approaches to machine translation have become predominant, with Statistical Machine Translation (SMT) being the most actively progressing area. Success of these approaches depends on the availability of parallel corpora. In this paper we propose Active Crowd Translation (ACT), a new paradigm where active learning and crowd-sourcing come together to enable automatic translation for low-resource language pairs. Active learning aims at reducing cost of label acquisition by prioritizing the most informative data for annotation, while crowd-sourcing reduces cost by using the power of the crowds to make do for the lack of expensive language experts. We experiment and compare our active learning strategies with strong baselines and see significant improvements in translation quality. Similarly, our experiments with crowd-sourcing on Mechanical Turk have shown that it is possible to create parallel corpora using non-experts and with sufficient quality assurance, ...
Vamshi Ambati, Stephan Vogel, Jaime G. Carbonell
Added 29 Oct 2010
Updated 29 Oct 2010
Type Conference
Year 2010
Where LREC
Authors Vamshi Ambati, Stephan Vogel, Jaime G. Carbonell
Comments (0)