Sciweavers

EMNLP
2008

Stacking Dependency Parsers

14 years 29 days ago
Stacking Dependency Parsers
We explore a stacked framework for learning to predict dependency structures for natural language sentences. A typical approach in graph-based dependency parsing has been to assume a factorized model, where local features are used but a global function is optimized (McDonald et al., 2005b). Recently Nivre and McDonald (2008) used the output of one dependency parser to provide features for another. We show that this is an example of stacked learning, in which a second predictor is trained to improve the performance of the first. Further, we argue that this technique is a novel way of approximating rich non-local features in the second parser, without sacrificing efficient, model-optimal prediction. Experiments on twelve languages show that stacking transition-based and graphbased parsers improves performance over existing state-of-the-art dependency parsers.
André F. T. Martins, Dipanjan Das, Noah A.
Added 29 Oct 2010
Updated 29 Oct 2010
Type Conference
Year 2008
Where EMNLP
Authors André F. T. Martins, Dipanjan Das, Noah A. Smith, Eric P. Xing
Comments (0)