Many distributed systems can be modeled as network games: a collection of selfish players that communicate in order to maximize their individual utilities. The performance of such games can be evaluated through the costs of the system equilibria: the system states in which no player can increase her utility by unilaterally changing her behavior. However, assuming that all players are selfish and in particular that all players have the same utility function may not always be appropriate. Hence, several extensions to incorporate also altruistic and malicious behavior in addition to selfishness have been proposed over the last years. In this paper, we seek to go one step further and study arbitrary relationships between participants. In particular, we introduce the notion of the social range matrix and explore the effects of the social range matrix on the equilibria in a network game. In order to derive concrete results, we propose a simplistic network creation game that captures the effe...