Pipeline architectures provide a versatile and efficient mechanism for constructing visualizations, and they have been implemented in numerous libraries and applications over the past two decades. In addition to allowing developers and users to freely combine algorithms, visualization pipelines have proven to work well when streaming data and scale well on parallel distributedmemory computers. However, current pipeline visualization frameworks have a critical flaw: they are unable to manage time varying data. As data flows through the pipeline, each algorithm has access to only a single snapshot in time of the data. This prevents the implementation of algorithms that do any temporal processing such as particle tracing; plotting over time; or interpolation, fitting, or smoothing of time series data. As data acquisition technology improves, as simulation time-integration techniques become more complex, and as simulations save less frequently and regularly, the ability to analyze the time...